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AERODYNAMICS OF LAMINAR DIFFUSIVE FLAMES

L. P. Yarin

It is characteristic for intensive combustion of /395*'

unmixed gasses that there is a clear leading edge of the flame,

dividing the flow field into two areas, one of which contains the

fuel and combustion products, while the other contains the oxi-

dizer and combustion products. The structure of the flame corres-

ponds to complete mixing of the components and infinite chemical

reaction rate at the leading edge of the flame. The pressure of

only one of the two reagents in each of the two areas allows the

Burke-Schuman-Zel'dovich model [1, 2] to be used effectively for

determination of the primary characteristics of the gas flame [3,

4]. This article studies the aerodynamics of a number of charac-

teristic types of straight-stream laminar gas flames in the frame-

work of this model, including a free flame, a semilimited flame

and a flame propagating in a wake. The solution is presented

within the framework of boundary layer theory, based on a general-

ized plan for calculation of a diffusion flame [4].

1. Let us study the aerodynamics of a flat laminar flame,

formed as a gas stream leaves a narrow rather long slit. We will

assume that the pressure is constant throughout the flow area,

pp=const, that the Lewis number is equal to one. This allows us
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to limit ourselves to solving only the dynamic and diffusion

problems. We will also ignore changes in molecular weight during

the process of the reaction.

Under these assumptions, the problem is reduced to integra-

tion of the following system of equations:

I t)3Y -

__ O y ;y V! l

-'D(1)

with the boundary conditions: /396 

0, here ;u where where

where Ac -cl-C,= cjz.-.. Q, c, are the concentration ofC. C..

fuel and oxidizer respectively; O' is the stoichiometric coeffi-

cient.

Let us also write the integral relations replacing the ini-

tial conditions:

pu' dy= ,; p u Kc d y = Go. (1, C - cnst).
;, b

Making a transition to the plane of variables x= ,pd, we

will seek the self-similar solution to equation system (1) as:

... F'(,, u.' )n(*,u,=At-, A-c=r' , s, Ba U~ ~~'
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(A, B, r are constants, defined by the integral characteristics

of the stream Io, GO; a=y=B/2=-1/3). The expressions defining

the values of the desired functions are [5]:

F/ F' {() = (Ch *,)- -2, n (') = ~(Chm)r o. J(2)

Considering (2), we can write, following [4], relationships de-:!

fining the distribution of concentration in the transverse cross

sections of the flame:

C| (a Ih T )2Pr _ (l $+)2Prt

es m (Ch )2 P'r [(ch )2 Pr _ 1] i
(3)

for the internal area of the flame, and

- (. -C(4)

1

for the external area

Introducing the flame length 15 as the characteristic scale,

let us write an equation defining the change in fuel concentra-

tion along the axis of the flame, and an equation relating the

coordinates of the leading edge of the flame:

!':- .:h I )"' Jl / (5)

(6)
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l/Here and below, the subscript "p" indicates the value of a
quantity at the leading edge of the flame.



where ';. i.,; =,', is the scale of concentration.
~ t , Cl.n m '-

If we make a transition from the stream of the source to a

stream of finite size having the same integral characteristics,

and assume that the initial concentration of fuel at the output /397

of the effective nozzle is cl.
0
, then as the fuel flows out with-

out inert impurities (c 0=l1), calculation of cl.m using equation

(5) can be performed only in the range of change of -' o from

0.152 to 1. This limitation reflects one peculiarity of the

self-similar solution, in that it does not allow calculations in

the area of the nozzle.

The change in temperature along the axis of the flame can be

found from the condition of similarity of the profiles of total

enthalpy and the generalized concentration

/KIm ki b (| = i + qc).

from which:

_Ig 91tItggO ( ¢> Q + 1) _ qt·I),^. X(7)

where q is the efficiency of ,the fuel; = Si. Using (3) and

(6) and considering that 4- -ti~~ let us transform equation

(7) to

/ 4-i0=(4- t[2-( c)~t'j. / (8)

Relationships (2)-(8) allow us to determine the aerodynamic

characteristics of the flame once we have found its length.
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This is determined from the condition of equality of the potential

chemical energy of the source to the summary heat flux passing

through the transverse cross section of the flame, corresponding

to the value of the coordinate x=1 [6].

Figure 1 shows the change in velocity, temperature and con-

centration along the axis of the flame. The curves are universal

in nature, since they relate to various flow conditions--various

initial values of fuel concentration, oxidizer concentration in

the surrounding space, Re number, etc. This generalization is

possible due to the selection of the flame length as the charac-

teristic scale. Obviously, with this normalization the parameters

influence the flame length, which acts as the main scale charac-

teristic of the diffusion flame.

The distribution of characteristic quantities in the field

of flow of the flat laminar flame is shown on Figures 2 and 32.

They show the fields of velocities and temperatures, flux density

and momentum flow density, and also (see Figure 2) the flow lines

and flame leading edge lines. The graphs show that within the

framework of the calculation plan used there is a discontinuity

of derivatives of momentum flow density across the leading edge

of the flame. However, as calculations have shown, the change of

(pu2 )' at the leading edge of a diffusion flame is slight, which

2
p=By?x3
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allows us to assume profiles pu2 smooth in approximate calcula-

tions. This is broadly used in calculating turbulent diffusion

flames [3].

The influence of a number of parameters on the configuration

of the flame is illustrated by Figure 4. We can see from this

graph that a change in the initial concentration of the fuel

causes a shortening of the flame: and a decrease in its width3.

The value of the Pr number and exhaust velocity of the gas also

have a significant influence.

r-e 2. A semibounded flame. As we know,

s_ the aerodynamics of a semibounded flame have

L~/'i•1;1~ / _inherent peculiarities, characteristic both
0 o ,25 00 gas . /

for the free boundary layer and for a boundary
Figure 1. Change
in velocity, tem- layer next to a solid surface. It should be
perature and con-
centration of noted that, depending on the type of boundary
fuel along flame
axis conditions at the wall (r =0, =° ay

KTonst) , both the calculation plan and the

very statement of the problem of combustion of the flame change.

For example, in particular, the condition T =const cannot be com-
w

bined with the basic assumption of diffusion flame theory, that of

constancy of temperature across the leading edge of the flame.

Actually, at the tip of the flame, i.e., at the point where the

leading edge contacts the surface of the solid, two conditions

6
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Figure 2. Velo-
city and Temper-
ature Distribu-
tion in Flat
Laminar Flame
(cl.0=1, c2.=

=0.23, Pr=l,
T /Tc=7.17)

should be fulfilled simultaneously: T=T
w
and

T=T . With arbitrary fixation of wall temper-

ature, these conditions are obviously incom-

patible. Therefore, the solution of the prob-

lem of combustion of a semibound flame where

Tw=const can be produced only by considering

the kinetics of the process, when the change

in temperature along the leading edge is

determined by the thermal mode of combustion.

We note that with intensive heat transfer and

correspondingly sharp supercooling of the

reaction zone, combustion at the tip of the

flame may be converted from the diffusion area

to the kinetic area. As a result, there will

be no clearly expressed leading edge to the

flame in this area.

Without studying the general statement of the problem, let us

limit ourselves to discussion of the results relating to the par-

ticular case of combustion of a gas near an adiabatic wall. In

solving the problem of diffusion combustion with a jet flowing

around a nonconductive plate, we must integrate equation system

(1) considering the following boundary and integral conditions:

-UO 0adz0 o wherey]=O;u--S, acc=O where] y 

\ p_ ju pudy) a y = const, puAc d y = const. /
o, ~ _/
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Assuming u/um=F(~), um=A a, etc., we can write the solution to the

equations of motion and diffusion as [5, 7]:

1 XF , · 1 arctan + arctan 

______ (______________ _ -_ _ (9)

n(=)exp -- Pr Fd. (10)

Using these relationships, let us write expressions describing the /399

distribution of concentrations of reagents and temperature in

transverse cross sections of the flame:

/L ,. ', ; (exp- Pr Fdt)p (ei Pr i o ' ,

i/ - i, --__ I - exp (Pr I(Fd- ('P)

c*_i-exp Pr( Fd IFd*)

(12)

correspondingly for the internal and external areas of the flame.

The equation relating the coordinates of the leading edge of the

flame is:

/ xpi--Pr ! Fd) - E'.

(13)

Figure 5 shows the distribution of characteristic quantities in

the flow field of a semibounded flame. We can see from the graph
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that with increasing distance from the mouth, the temperature

field is gradually smoothed. Significant smoothing of the temper-

ature field in the internal area of the flame results from the;

increase in wall temperature with increasing distance from the

source. As concerns the distribution of velocities in the trans-

verse cross sections of the flame, it is similar to the distribu-

tion of velocity in semibounded streams without combustion. In a

flame, as in a stream, the longitudinal component of the velocity

vector has a maximum located at some distance from the wall. The

displacement of the maximum of the velocity (for fixed values of

i) depends on the heat liberated in the combustion zone--the heat

content of the fuel. This relationship appears implicitly as the

dependence of transverse coordinate y on density field and is

detected upon transition from the plane of variables C and q to

the plane of variables x and y.

2 4 6 8 y

Figure 3. Distribution of
Velocity, Flux Density,
Momentum Flow Density and
Temperature in the Trans-
verse Cross Section of a
Flat Laminar Flame (x=0.5;
cl.0=l, c,=0.23, T /To =

=7.17)

3. A flame in a wake. The

commonest type of straight-stream

flame is the flame propagating in

a wake. It has both the charac-

teristic properties of flooded gas

flames, and certain specific pecu-

liarities resulting from the aero-

dynamics of wake flow. In particu-

lar, in a wake flame the distribu-

tion of velocity, temperature and

concentration, length and shape of
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the flame depend not only on the initial values of u, T, c and

the physical and chemical properties of the reagents, but also on

the relationship between the velocity of the stream and the velo-

city of the flow. One significant peculiarity (from the stand-

point of construction of calculation) of a wake flame is the non- /400

self-similarity of the flow. Therefore, we shall use integral

methods of calculation of free streams to analyze the aerodynam-

ics of a flame propagating in a wake [8].

Let us write the equations of

motion and diffusion in Dorodnitsyn

variables, after combining them to the

continuity equation:

: £5 f Or- *~~aa(u--u t ) + dV(u--u) _

V V4, dP (u -u,)
X ; I . aff j (14)

+ +-=D. ."e

d - .E ' | a(15)

Figure 4. Configura- and represent the desired functions uAu
tion of a Flat Laminar
Flame. and uAc as:

a) ,...; D-eS X- -U-a-; Re-
t,. PrI-i* 9) I-b-. 1-R5 )-l

R- A; CiA-Co0t Pr-l; ) -Pr-l. 
-Pr-O.S. *-Pr-US. c ~c aaat. Re\- (u.-u)-Sa,, , u c= as .

where u is the velocity of the wake.

Limiting ourselves to third power polynomials, let us deter-

mine the value of the coefficients from the additions on the axis

and the external boundary of the boundary layer:
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' where = 

u( -u,)= O, u Ac-0, --. =0, -- -0 where L
where 6 is the thickness of the boundary layer.

As a result, we produce:

l U(U-U ,).-- (2 U'n- U,)um d.(.l--a ) j 2 f ;l. (16)

u cu=u,, Ac, F (17)
(17)

where

Assuming in (16) that n=O, we produce an equation relating

the value of velocity on the axis to the thickness of the boundary

layer:

--2 -'u. d(u -t } -

Up1 - U ..
I, .

(18)

Based on the condition of retention of excess momentum /401

P2 u(u-u )dy- , we have:

I.

u (u. - = 2~ d- (19)

Considering this relationship, equation (18) can be written as:

Ad=RI~~ ~~~ {Zb ( m63. I(20)
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Figure 5. Distribution of Velocity and Temper-
ature in Semibounded Flame (cl.0=1, c2 .=0.23,
T /T =7.17)

where u - =2a, 8=- , R.= .. ,L. is the height of the nozzle.

Integrating equation (20) from 0 to 5 and 1 to 6, we produce

- l.m= I .'-.)(m 4m' +4(i- .m)1',5-2(1-l-m)\

x [ F + 4/F (I ;-- + 4(,- m),I (I VT + Vm) | + 4 1(- )+

2X (21)

where (I ()- °I '4Ro (Im - +4(.-m'-2{- r, [mVms+-m +

is the length of the initial
+ 4 e!'m)Inlm+,,, +4,_,].} is the length of the initial

sector. In a wake flow, the length of the initial sector is a

function of parameter m. Therefore, in calculating total length

of the flame, we must consider the function Co(m). To determine

it, we write the integral conditions as follows (Figure 6):

If I u(u-uajdtj= uo(uo-u~jdr+ u(u-u~di;, . (22)

/ ~' (23)

12
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Assuming u(u-u,)/u0(uO-u,)=F(n), after several transforms we pro-

duce

s + ('ia - id = F ( .) d -n = 0.5,

(I + m).- .. -
2Ro f I

(24) /402

(25)

where

(=)--- 0, 5 ) [ "mS + 44(1 - miF(;)-+ 3m] d

,2= .. 4I X() d , t -va
m' + 4(1 - m) F (;) % -- o

o

Figure 6. Dia-
gram of Flow in
Initial Sector
of Wake Flame

Let us determine from (24) the derivative

dn0 /dg and substitute its value into (25). As

a result, we produce:

(
| me~ . 2Ro1 - rm)n)

Let us integrate this equation considering

60=0, n=1l at the end of the initial sector:

o= -Ro (t+,,)-3 Ii--m ID (26)

Equation system (19), (21), (26) allows us to determine the velo-

city on the axis of the flame. Changes in fuel concentration on

the axis can be found from the condition of conservation of flow

of generalized concentration:
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uM, Pa f F () d 1I
Go

Considering that where E=1~, cl, m=, we produce:

Um (;)Y (27)

where um(1 ) and 6(f1) are the velocity and thickness of the

boundary layer at the end of the flame respectively. Using (19),

we can write equation (27) as:

C (,,) +M 4 (I," - m ' ( 28

(28)

The distribution of concentration in the transverse cross sections

of the flame is:

U . .

I.--F ' ,'

(29)

z2= - F~t) u_
(30) /403

respectively for the internal and external areas of the flame.

In conclusion, let us define the equation relating the coordin-

ates of the leading edge of the flame and the dependence of flame
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length on fixed parameters. Assuming in (17) that n=n (cl=0) and

considering that u(n )=u(l ), we produce:

(31)

The equality of the potential chemical energy of the source of

summary heat flux passing through the transverse cross section of

the flame and the corresponding end indicates that4

() U(TbX~ )6s , ± i.(32)

Using (19), we can transform equation (32) to:

6(4)- (I+()'

(33)

Simultaneous solution of equations (21), (22) and (33) allows us

to determine the function 1 =f(B, m). This solution shows that

the distribution of velocity, temperature and concentration in a

wake depends significantly on the relationship of velocities of

the gas stream and the wake. The value of this ratio, which goes

far toward determining the intensity of the mixing process, has a

significant influence on the configuration of the leading edge of

the flame and the length of the flame. An increase of parameter m

causes (in the area m<l) a great increase in flame length. With

In writing the equations for heat balance, it was assumed that
the summary heat production in the flame qGO is significantly
greater than the initial flux of heat content qG0>>POu0 AiOLO.
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wake velocities greater than the initial flow velocity of the

stream (m>l), 1O decreases with increasing m.

Laminar diffusion flames of various types characteristically

show a linear dependence of flame length on Reynolds number.|

This number has a significant influence on the configuration of

the flame, distribution of velocity and temperature and concentra-

tion in the flow field. One of the most significant factors

determining the aerodynamics of a flame is the relationship of

concentrations of reagents and their stoichiometric ratio. It is

remarkable that for various types of diffusion flames, the influ-

ence of concentration of the components and 2 on the basic char-

acteristics of the flame is reflected by the single stoichiometric

complex "=(cl 0/c2 )2. A change in a (for example, ballasting of

the fuel with an inert gas) causes a sharp change in flame -

dimensions.

We note also that the statement used can be applied to the

study of the aerodynamics of combustion of a gas in other types

of stream flows allowing self-similar solution of the dynamic

problem. As in the examples above, the analytic solution can be

found only for particular cases of the dependence of transfer

coefficients on temperature. This limitation is not too rigid for

qualitative study of the influence of basic parameters on the

characteristics of gas flames. The solution of the problem in its /404

total volume considering the complex functions p(T) and X(T), etc.

can be found apparently only by numerical solution using

computers.
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